
J .  Fluid Mech. (1981), vol. 108, p p .  383-400 

Printed in Great Britain 
383 

On the transition between regular and Mach reflection 
in truly non-stationary flows 

By S. ITOH, N. OKAZAKI AND M. ITAYA 
Department of Mechanical Engineering of 

Kyushu Sangyo University, Fukuoka, Japan 

(Received 7 February 1980) 

Shock reflections over a convex and a concave wedge were investigated by using a 
5 x 7 cm ordinary pressure-driven shock tube. Dry air was used for both the driving 
and driven gases. The large difference between the transition from regular (RR) to 
Mach reflection (MR) and that from MR to RR was observed, confirming the results 
obtained by Ben-Dor, Takayama & Kawauchi (1980). These results contradict all of 
the previous theoretical transition criteria. A new theory on the transition between 
R R  and MR was developed by applying Whitham’s ‘ray shock’ theory. This new 
theory agrees quite well with the experimental results. 

1. Introduction 
It is well known that when a travelling normal shock wave strikes a solid-wall 

boundary, it reflects in one of four configurations, that is, regular reflection (RR), 
single Mach reflection (SMR), complex Mach reflection (CMR), or double Mach re- 
flection (DMR). Figure 1 shows the schematic diagram of reflection in pseudo-steady 
flows. I n  such flows, each of these reflections maintains a constant shock configuration 
increasing linearly with time from the instant the shock wave strikes the leading edge 
of the wedge. RR and SMR are characterized by two and three shock configurations, 
respectively (figures l a ,  b) .  CMR is characterized by a ‘kinked’ reflected shock wave 
shown in figure 1 ( c )  by capital K .  DMR has two reflected shock waves, two Mach 
stems and two slip streams. Owing to the geometry of the model used to reflect oblique 
shock waves in a steady flow, CMR and DMR cannot be materialized, even though the 
flow behind the reflected shock wave can be supersonic (Ben-Dor & Glass 1978, 1979). 
Hence, only RR (figure 2a) and SMR (figure 2 b )  are possible. 

When a travelling normal shock wave interacts with either a convex or concave 
wedge, there is a change in wedge angle 8, causing the flow behind the reflected shock 
wave to become truly non-stationary. In truly non-stationary flow, the original re- 
flection will change its configuration to RR or MR due to the gradual change of 8,. 
Ben-Dor et al. (1980) have shown that there is a large difference between the angle of 
RR --f MR transition and that of MR -+ RR transition. For example, a t  a Mach 
number of the incident shock wave M, = 4, the RR -+ MR transition occurred at  
8, z 40°, while the MR + RR transition took place at  0, z 65”. 

Three different theoretical transition criteria were reported by researchers in the 
years up to 1979. These were the ‘detachment’ criterion of von Neumann (1963); the 
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FIGURE 1. Illustration of four possible shock reflections in pseudo-steady flow. (a )  Regular 
reflection (RR). (b)  Single Mach reflection (SMR). (c)  Complex Mach reflection (CMR). (d) 
Double Mach reflection (DMR). IS, incident shock wave; RS, RS,, reflected shock wave; MS,  
MS,, Mach stem; SS,  SS,, slip stream; T, T,, triple points; x, triple-point trajectory angle. 

Wall Wall 

FIUURE 2. Schematic illustration of shock wave reflection in steady flows. (a) Regular reflection 
(RR) : 8, and 8, are the deflection angles of flows across the IS and RS, respectively. ( b )  Single 
Mach reflection (SMR). 

(a ) (b ) 
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‘ mechanical-equilibrium’ criterion of Henderson & Lozzi (1975); and the ‘length- 
scale’ criterion of Hornung, Oertel & Sandeman (1979). A full report dealing with 
these criteria and a comparison with experimental results was published by Ben-Dor 
et al. (1980). They believe that in steady flow, the RR 7+ MR transition reduces to 
the ‘mechanical-equilibrium’ criterion of Henderson & Lozzi (1 975). In  pseudo- 
steady flows the transition could reduce to either Henderson & Lozzi’s criterion or to 
von Neumann’s ‘detachment ’ criterion. But in truly non-stationary flows, the 
RR MR transition does not reduce to any of previously reported criteria. 

Heilig (1969) developed his theory of RR + MR transition by applying the ‘ray 
shock’ theory. Itoh & Itaya (1978) modified his theory by considering the strength 
of Mach stem (see subsequent discussion). The comparison between these theories and 
the experimental results was done by Ben-Dor et al. (1980). They have shown that 
Itoh & Itaya’s theory is more accurate than Heilig’s. 

Until now there was no theoretical criterion for the MR + RR transition in truly 
non-stationary flows. Following is the outline of our theory on the RR + MR tran- 
sition. Next we present a theory of MR + RR transition in truly non-stationary flow. 
Finally we compare this MR -+ RR transition theory to experimental results. 

2. Analysis 
The transition from RR to M R  in truly non-stationary Jows (outline)? 

In  shock wave reflection over a convex wedge, the RR -+ MR transition was observed 
at  the critical angle. Although Heilig’s theory was also developed by applying the 
‘ray shock’ theory, there are many discrepancies between his theory and experi- 
mental results (Ben-Dor et al. 1980). Our theory was developed based on the experi- 
mental results shown in figure 3. This figure illustrates the shock wave system in the 
vicinity of the RR -+ MR transition point. From its geometry, we get the following 
equations for shock motion: 

L = MoaoSt, Ls = Mlao6t, L‘ = Ls .sin (acrit), (1% b,  6 )  

where a, is a sonic velocity at the undisturbed region ahead of the incident shock wave, 
MI is the Mach number of the Mach stem, and 6t is an infinitesimal time. L and Ls 
are the distances through which I S  and M S  travel during 6t. L’ is the distance be- 
tween IS  and the intersection of the Mach stem and tangent m. If L‘ becomes greater 
than L, we see the onset of Mach reflection. We therefore define the critical angle a t  
which the Mach reflection occurs as 

L’ = L + 0, i.e., M,/Mosin (6c,it) = tan (6,,,,) (2) 

where Ocrit = 4. - ctCrit. As 8t -+ 0, Ml may be estimated by the ‘ray shock’ theory, 
in the same way as with a straight wedge. Using the ‘ray shock’ theory, the strength 
of Mach stem at the wall angle of 6, is found as follows: 

M d M  
6, = , (3) 

t Full report can be found in J.S.M.E. paper no. 396: ‘On the transition from RR to MR’, 
S. It,oh, I. Kamhayashi Rr M. Itaya (1979). 
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FIGURE 3. Schematic illustration of shock wave system in the vicinity of the transition point 
in RR + MR transition. aarlt is the critical incident angle at which the Mach reflection occurs. 
TS is the transmitted shock. 0 is the transition point. 

where A = A ( M )  and is an area of ray tube, M is the shock wave Mach number, and 
C is the characteristic velocity. The value of A is found using the following equation, 
known as the CCW equation (Chester 1954; Chisnell 1957; Whitham 1958): 

where 

and 

- 2MdM - dA 
A (M2-  1) K ( M ) '  
--- 

K ( M ) = 2  1+-- y 1 -p2) (2p + 1 + M-2)I-l [( Y+l Ilc 

( y - 1 ) M 2 + 2 *  
p2 = 2yM2-(y-  1)' 

(4) 

y is the specific heat ratio. K ( M )  is a slowly varying function which starts at  0.5 for 
weak shocks, when M = 1, and decreases to 0.394 (when y = 1.4) as M -+ co. 

Supposing that K ( M )  is constant and equal to n, then the integration of (3) readily 
yields the next equation: 

M ,  Ml = ~M,{[(MX 1 - I)* + Ma] exp [( &n)48,] + [ (Mt  - I)* + M,] exp [(in)* Owl-'>. (7)  

By the iterative numerical procedure, we get the value of Ml for given 8, and M,. 
In  the extreme case of M, -+ 1, (7) reduces to 

MJM, = cash (&Ow). (8) 

Ml/M, = (1 +8&/8). (9) 

By expending (8) with 8, and neglecting the higher order of 8&, we get 

Equation (9) is the same as the original equation for weak shock wave given by Whitham 
(1 957). 
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tan BW 

FIGURE 4. Graphs of the calculated values for MI sin ( O w ) / f i f ,  obtained using (1 1) versus tan 8,. 
- _ -  , the straight line having a slope of 1 and dividing the regions of MR and RR. Using the 
values assigned to M, written on the respective lines: --, the calculated values for MI sin (Ow)/ 
Mo in the region of MR;  - - -, the calculated values for MI sin (O,)/M, in the region of RR. 

In the other extreme case of M, -+ 00, we get 

M1/J&, = exp [(0.394/2)4 Ow]. (10) 

Equation (10) is the same as the original equation given for strong shock wave (Whit- 
ham 1957). 

By substituting ( 7 )  for (2), we obtain the theory of transition from RR to MR as 
follows: 

In equation ( 1 I) ,  eCri, is replaced by 8, in order to have a general meaning. We cannot 
get the solution of (1 1) analytically but iteratively. Some results of calculations are 
shown in figure 4. In this figure RR and MR indicate the regions where the regular 
and Mach reflections occur. The points of intersection between the straight and curved 
lines are the critical angles in RR -+ MR transition. The critical angles are shown in 
table 1. The angles dray and edet indicate the theoretical critical angles obtained by 
(1 1)  and by the ‘detachment’ criterion of von Neumann (1963)’ respectively; 
indicates the theoretical critical angle obtained by the ‘ mechanical-equilibrium ’ 
criterion of Henderson & Lozzi (1975). 5 is the inverse pressure ratio of incident shock 
wave. When 6 > 0.433, a value for Omech could not exist, as pointed out by both 
Kawamura & Ssito (1956) and Henderson & Lozzi (1975). The critical angles obtained 
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5 
0.0 
0.1 
0.2 
0.3 
0-4 
0.5 
0-6 
0.7 
0.8 
0.9 
1.0 

6ra, 

45.25 
44-42 
43.16 
41.58 
39.75 
37.61 
34.98 
31.70 
27.28 
20.46 
0.00 

‘act 

50.03 
50.80 
50.75 
50.15 
49.91 
47.50 
45.45 
42-30 
37.40 
29.25 
0.00 

‘meoh 

67-50 
60.90 
56.30 
82.90 
49.70 - 

TABLE 1. Critical angle values in RR MR transition. O,, and Ode* indicate the critical angles 
obtained using (1 1) and by the ‘ detachment’ criterion of von Neumann (1 963), respectively. 
Bmech is the critical angles from Henderson & Lozzi’s criterion. 

by Hornung et aZ.’s ‘ length-scale ’ criterion were almost identical to the values of von 
Neumann’s ‘detachment ’ criterion in pseudo steady flows. Therefore, we eliminated 
the ‘length-scale ’ criterion from this table. 

The transition from MR to RR in truly non-stationary flows 
Figure 5 shows the schlieren photograph of Mach reflection over the concave wedge. 
It was taken at the initial pressure Po = 50 torr, and the initial temperature To = 300 K. 
7 indicates the time measured from the instant the travelling normal shock wave 
strikes the leading edge of the wedge. It can be seen that the Mach stem is almost 
straight and nearly perpendicular to the tangent of the concave wedge. A schematic 
diagram of MR over the concave wedge is shown in figure 6. Assuming that the Mach 
stem is straight and perpendicular to the tangent of the concave wedge, then the 
strength of Mach stem a t  any given instant will be the same at all points along itself. 
From the geometry of figure 6, we get the equations: 

A ,  = A, A,  = coseo-(i-h)GOS(e0+q5); (12a, b )  

(13) L = Modal = [ 1 - ( A  + dh)]  sin (0, + q5 + dq5) - (1 - A )  sin (0, -t q5); 

where L is a distance through which the incident shock wave travels during the in- 
finitesimal time interval dt, and h is an undimensionalized length of Mach stem. $ 
is the L &ON as shown in this figure. d h  and dq5 are infinitesimal increments of h and 
of q5, respectively. 0, is the initial angle of a concave wedge. A ,  and A ,  are A(&&,) and 
A(Ml) ,  respectively. 

Supposing that both dh and dq5 are much smaller than 1, then we may neglect their 
higher orders. By rearranging (13), we get the ordinary differential equation: 

dh 

From Bryson & Gross (196l),  we get the relation between da, = a& and dq5 as follows: 

da,/dq5 = (1 - ia)/iw,. (15) 
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FIGURE 5 .  An instantaneous schlieren photograph of the Mach reflection over the 
concave wedge. Mo = 1.8,~ = 62.18 ys, Po = 50 tom, To = 300 K. 

Substituting into (14), the equation for the length of Mach stem follows 

dh  1-h 1 -h /2  

389 

In  calculating the length of Mach stem using (16), the value of Mo/Ml has to be 
estimated. Using the following expression for the characteristic velocity C: 

c = [d( - M2)/d(A2)]4 
then (3) may be altered to 

The relation between A and M described by (4) was deduced by neglecting the 
effects of the reflected shock wave and of the slip stream. Oshima et al. (1965) and 
Milton (1975) successfully added those effects. Milton’s modification was made using 
the Rankine-Hugoniot condition at  M -+ 00, which is only useful for a strong shock 
wave. We modified the relation between A and M using the full Rankine-Hugoniot 
condition which is useful for all shock wave strengths. The reflected shock wave and 
the slip stream deform Cf as seen in figure 7 ( b )  (Oshima et al. 1965; Milton 1975). 
This change is described by (a; = (do ;+  (ex (19) 



390 S .  Itoh, N .  Okazaki and M .  Itaya 

FIGURE 6. A schematic diagram of shock wave reflection over a concave wedge. 0 is the origin 
of the radius of the curvature of the concave wedge. Other notations are explained in the text. 

X 4  X- 

(a ) (b ) 
FIGURE 7. Schematic diagrams of z-t wave. (a) Non-disturbance case. (b) Single Mach 

reflection case. Cf and G- indicate the characteristic lines. 

where d[ = du + ( d p / p )  + [uu/(u + a)]  d(1n A ) ,  in which p is pressure, p is density and 
u is flow velocity. On line 31, the incident shock wave is undisturbed and du, dp and 
d(ln A )  are all zero, making (dc): equal to zero. By integrating dc between the points 
3 and 2, and differentiating with respect to s in  the characteristic direction, a disturb- 
ance term follows 
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where 

Substituting into (19) gives the dishrbed case: 

(dt;)? - (8 + a)  as = 0. (21) 

Using the full Rankine-Hugoniot condition on the derivatives of correction terms 
daldp and da/cl(ln A) ,  we get 

and 

[2a,([2yM2-(y- 1)3*[(~- 1 ) M 2 + 2 ] t ( M 2 +  1)+4(y- 1) (M2-1)2  

x ( 1  +yM4))/{(y+ 1)M2[2yJM2- (y-1)l*[(y-1)M2+21' 

x [2 (M2-1)+{2yM2- (y -  1 ) } ~ ~ ( ~ - 1 ) M 2 + 2 } * 1 2 } l ~ .  dM 

Also using the full Rankine-Hugoniot condition on (at;):, and combining the inte- 
grated forms of (22) and (23))  we get the modified relation between A and M as follows: 

d a  
d @ a j  = 

(23) 

-2MdM 7 
--dM, dA -= 

A ( M 2 - 1 ) K ( M )  M (24) 

(25) 
M i  ( F + 2 B ) E  DB(M2+ 1)+4(M2-  1)23' 

where 

7 = (1-) M2 (M2-1)BD ( M 2 - 1 ) D E  

In the extreme case of Mo -+ co, 7 reduces to 

Equation (26) is the same equation obtained by Milton (1975). 
Integrating in ( 4 )  and in (24), A is given by 

or 

where k is any arbitrary constant. The calculated values of logIof(M) using either 
(27a)  or (27b) are plotted in figure 8. As can be seen, use of the correction term signifi- 
cantly changes the relation of A-M. 

Using the modified relation between A and M ,  6, is described as follows: 
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Mo 3 4  5 6 7 8 9 10 

-1  

-2 

FIGURE 8. Graph of the values for logIof(M) in the case Ma = 1.8. - - -, calculated 
values obtained using (27 a)  ; - , calculated values obtained using (27 b ) .  

Mo 4 6 8 I0 12 M 

FIGURE 9. Graph of the values for 8, = Ss0 d M / A C  in the case M, = 1.8. - - -, calculated 
values obtained using (28) ; __ , calculated values obtained using (18). 

The calculated vaIues for 6, obtained using (28), are shown in figure 9, together with 
those obtained by (18). As M increases, the values of 0, obtained using (28) increase 
more steeply than those obtained using (18). 

In  calculating the length of Mach stem using both (16) and (28), we used the initial 
value of A, at the angle #,, = 0.5". A, was given by the distance between the points I 
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FI~URE 10. Illustration of the way in which the initial length of Mach stem A, is determined. 
The notations are explained in the text. 

loo a 

FIGURE 11 .  The calculated length of Mach stem in the concave wedge at strong incident shock 
strength (M, + co) using (16) with (28). 

and J shown in figure 10. The point I exists on the concave wedge. The point 0 is the 
origin of the radius of the curvature of the concave wedge. The line OTis perpendicular 
to the tangent of the concave wedge. J is the point of intersection between the l i n e n  
and the line having a slope of tan m originating from the leading edge of the concave 
wedge. The term of m indicates the characteristic angle defined as 

Figure 11 shows the calculatedresultsobtainedin the case of M, + 03. A, = 0.003812, 
m = 23.938" and $crit = 72.5'. As $ increases, h also increases from A, to its maximum, 
then it decreases continuously to zero at  $crit. We define $crit as the critical angle of 
the MR -+ RR transition in truly non-stationary flows. 



394 S.  Itoh, N .  Okaxaki and M .  Itaya 

(0 ) (b)  
FIGURE 12. Scale drawings of the two models used in the present study. 

(a) Model A ,  convex wedge. (b) Model B, concave wedge. 

3. Experiments 
The experiments were carried out using an ordinary pressure driven shock tube 

with a 5 x 7 em rectangular duct. This was constructed from structural steel duct and 
consisted of a 1.62 m driver and a 5 m driven section followed by a test section. Mylar 
plastic sheet was used as the diaphragm material. The incident shock wave Mach 
number tested was 1-15 < Mo Q 2.0. The shock wave velocity was measured with a 
digital counter and pressure transducers located 300 mm apart just ahead of the test 
section. Dry air was used for the driver and driven gases. The initial temperature To 
was about 300 K in all the tests. The initial pressure Po was varied from 10 to 300 torr 
in order to change the strength of the incident shock wave. A semicylinder having a 
radius of 35 mm (model A ,  figure 1%) and a quadrant block with a radius of 50 mm 
(model B,  figure 12b) were used for the convex and the concave wedges, respectively. 
Photographic studies were carried out using a time-delayed spark schlieren optical 
system triggered by a pressure transducer located just ahead of the test section. With 
this test arrangement only one photograph could be obtained for each firing of the 
shock tube, so that the sequence of events over the models A and B was pieced together 
from the results of several separate runs. Test conditions for each run were observed 
to be satisfactory for accuracy. 

4. Results and discussion 
A series of schlieren photographs obtained using the models A and B are shown in 

figures 13 and 14, respectively. I n  both cases, the incident shock wave is moving from 
left to right. As r ,  defined previously, increases, there is the transition from RR 
(figure 13a) to MR (figure 13c) with model A. With model B, as 7 increases, there is 
the transition from MR (figure 14a) to RR (figure 14c). 

Figure 15 shows the locus of triple points, defined as the point of intersection of 
three shock waves - the reflected shock wave, the Mach stem and the incident shock 
wave. aray and adet, respectively, are complementary angles of Or,, and Ode*. The 
points GA and GB are located on the convex wedge, and were found using the critical 
angle obtained from ( 1 1 )  and by the ‘detachment’ criterion, respectively. Lines A 
and B, originating from the points GA and G,, respectively, were drawn by the method 
of characteristic (Bryson & Gross 1961). Line A is in better agreement with the experi- 
mental results than line B. 

Actual Mach stem lengths are shown in figure 16 compared to the graphs of theoreti- 
cal calculation. A solid and a broken line indicate the theoretical lengths of Mach stem 
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(a) 

FIGURE 13. FIGURE 14. 

395 

FIGURE 13. A series of schlieren photographs. Shock-wave reflection over the convex wedge 
(model A )  when M, = 1.8. (a) 7 = 7.85 ps, (b) 24.43 ps, (c) 50.01 ps, (d )  89.79 ps. 

FIGURE 14. A series of schlieren photographs. Shock-wave reflection over the concave wedge 
(model RI when M, = 1.8. (nl 7 = 18.14 ILS. ( b )  35.96 ,us, (c) 7 = 74.30 ,US, (d) 79.93 p. 
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0 0.5 1 .o 
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FIGURE 15. The locus of triple points in shock wave reflection over the convex wedge when 
M,, = 1-92. $, our experimental results; 0 ,  Heilig’s data (1969); line A ,  the theoretical locus 
of triple points originating a t  Ga ; line B,  the theoretical locus of triple points originating at GB. 

obtained using (16) with (28) and with (18), respectively. q5crit is the angle a t  which 
the theoretical length of Mach stem, obtained using (16) with (28), becomes zero. As 
previously stated, we define q5crlt as the critical angle of the MR -+ RR transition in 
truly non-stationary flows. We see that the theoretical lengths of Mach stem indicated 
by the solid line, are in better agreement with the experimental results than those 
indicated by the broken line. Also, the theoretical critical angles of MR .+ RR tran- 
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li 
x 

0.5 

0 

X* 
FIGURE 17. The locus of triple points in shock wave reflection over the concave wedge when 
M,, = 1.8. *, experimental results; - - - , the straight line having a slope of tan m originating 
from the leading edge of the concave wedge ; --, the calculated locus of triple points obtained 
using (16) with (28). 

sition ($,& are very close to those found in experiments. Using the theoretical lengths 
of Mach stem, we can draw the locus of triple points over the concave wedge. An 
example (M, = 1-8) can be seen in figure 17. The solid line indicates the theoretical 
locus of triple points obtained using (16) with (28). Near the leading edge of the 
concave wedge, the experimentally found locus of triple points is very close to  the 
straight line having a slope of tanm. This evidence proves the assumption that A, 
can be found by the method used for figure 11.  We see that the theory matches well 
with the experimental results. 

The comparison between the theoretical and experimental critical angles of the 
MR 2 R R  transition is shown in figure 18. Lines I and I1 indicate the theoretical 
critical angles obtained by Henderson & Lozzi’s criterion (1975), and by the ‘de- 
tachment’ criterion of von Neumann (1963), respectively. Line I11 indicates the 
theoretical critical angle obtained by ( 11). Line IV indicates the theoretical critical 
angle obtained using (16) with (28). The symbol 4 indicates the experimental results 
of Heilig (1969) obtained when the reflection of a shock wave is over a convex wedge. 
The symbols 0 and indicate the experimental results of Ben-Dor et al. (1980) 
obtained from the shock wave reflection over a convex and a concave wedge, respect- 
ively. Our experimental results are shown using $ for reflection over a convex wedge, 
and I for reflection over a concave wedge. All of the experimental critical angles of 
the R R  t MR transition in truly non-stationary flows were very different from 
theoretically calculated angles indicated by lines I and 11. In the R R  --f MR transition, 
line I11 agrees quite well with the experimental results up to the strong shock strength 
of E z 0.6. When < < 0.6, the discrepancies between line I11 and the experimental 
results increase as [ decreases. This may be explained by not accounting for real gas 
effects and the disturbances occurring behind the Mach stem. The difference between 
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FIGURE 18. Experimental resuIts of the MR --f RR and RR + MR transition in the ( f -  $crit) 

plane and some theoretical transition lines. $,,,, is the critical angle of the MR + RR or RR -+ MR 
transition. f is the inverse pressure ratio across the incident shock wave. 0, Ben-Dor et aZ.'s data 
(1980) over the convex wedge; 4, Heilig's data (1969) over the convex wedge; p, our results 
over the convex wedge; a, Ben-Dor et aL's data (1980) over the concave wedge; 9, our experi- 
mental results over the concave wedge. Line I is the transition according to the 'mechanical- 
equilibrium' criterion of Henderson & Lozzi (1975). Line I1 is the transition according to the 
'detachment' criterion of von Neumann (1963). Line I11 is the transition obtained by (11). 
Line IV is the transition obtained by (16) with (28). 

the critical angle of RR -+ MR transition and that of MR -+ RR transition in truly 
non-stationary flows is reconfirmed by our tests. A new theory indicated by line IV  
agrees quite well with the experimental results of MR -+ RR transition up to 6 x 0.5. 
Wlitn 6 < 0.5, the discrepancies between line IV and the experimental results increase 
as 6 decreases. This, again, may be explained by not accounting for real gas effects 
and the disturbances occurring behind the Mach stem. The disturbances occurring 
behind the Mach stem, as pointed out by Milton (1975), may deform the Mach stem. 
The strength of Mach stem, therefore, cannot be determined by (7 ) ,  nor can it be 
ass1 tmed that the strength of Mach stem at any given instant is the same at  all points 
along itself. 

5. Conclusion 
Our experiments revealed that the transition from RR to MR and that of MR to 

RR are clearly different in truly non-stationary flows. The experiments also indicated 
that, in truly non-stationary flows, the critical angles of the RR MR transition 



Transition between regular and Mach re$ection 399 

contradict all of the previous transition criteria, that is, the ‘detachment’ criterion 
of von Neumann (1963); the ‘mechanical-equilibrium’ criterion of Henderson & Lozzi 
(1975); and the ‘length-scale’ criterion of Hornung et al. (1979). 

Our theory of the critical angles of RR -+ MR transition was developed by applying 
Whitham’s ‘ray shock’ theory. This theory accurately predicts the results achieved 
through experiments when the shock strength is weak (5 2 0.6). As the shock strength 
increases ($ c 0.6), the neglection of real-gas effects and the disturbances occurring 
behind the Mach stem become noticeable. The discrepancies between our theory and 
the experimental results became greater as 5 decreased. 

Locus of triple points - the point of interaction of an incident shock wave, a re- 
flected shock wave, and a Mach stem - were also investigated. Our results, with 
model A,  reconfirm Heilig’s (1969) experimental results of reflection over a convex 
wedge. The theoretical locus of triple points is drawn using the method of character- 
istics (Bryson & Gross 1961) starting at  any initial point. The theoretical locus, drawn 
using the initial point of our calculated critical angles, is in better agreement with the 
experimental results than that obtained using the initial point obtained with the 
‘detachment ’ criterion. 

We modified the relation between A and M developed by Milton (1975) using the 
full Rankine-Hugoniot condition. Using this modified relation between A and M ,  
we developed the theory of the length of Mach stem in Mach reflection over a concave 
wedge. This theory quite accurately predicts the actual experimental results achieved. 
Using the theoretical lengths of Mach stem, we can draw the locus of triple points 
over the concave wedge. We see that the theoretically calculated locus of triple points 
matches well with the experimental results. 

The critical angles of the MR --f RR transition obtained by our theory are very 
close to those found in experiments with weak shock strengths (6 2 0.5). At strong 
incident shock strengths ($ < 0.5), the effects of real gas on the shock motion were 
more than expected. Additionally, the disturbances which occurred behind the Mach 
stem deformed the Mach stem. Consequently, further study on the criteria of MR e RR 
transition may be necessary at  strong incident shock strengths. 
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